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1. The Locus Coeruleus and Neurotransmission 

1.1. INTR~~xJU-~~N 

Since the discovery that the locus coeruleus (LCl contains the greatest number of 
norepinephrine-containing cells (NE cells) in the central nervous system (CNS), and has 

by far the most extended target region in the CNS of all central NE cells groups 
(Dahlstrom and Fuxe. 1964; Swanson and Hartman, 19751, very many investigations 

have been devoted to this small nucleus (reviews e.g. Amaral and Sinnamon, 1977; Clark. 
1979: Ramm, 1979; McNaughton and Mason, 1980; Van Dongen, 19801. As a conse- 
quence of these investigations much knowledge has accumulated on the morphology of 
the LC cells and their terminals, and on the central NE transmission, such that the LC is 
an often used illustrative example in discussions on neurotransmission and neuromodu- 

lation (e.g. Dismukes, and commentaries, 19791. In this paper I intend to review the data 
found in the literature on the central NE transmission which are relevant for the molecu- 
lar mechanism of NE- induced effects, and for the question on whether NE is an efferent 
neurotransmitter (or an efferent neuromodulator) of the LC (cf. also Szabadi, 1979; and 
Woodward. 19791. The implications of these findings for the general discussion on neuro- 
transmission and neuromodulation will be mentioned; their implications for the ‘func- 
tion’ of the LC are mentioned elsewhere (Van Dongen, 1980, pp 137-143). 

1.2. DEFINITION OF THE LC 

In this paper “locus coeruleus” is used as a collective term for the catecholamine- 
containing cells (CA-cells) in the dorsolateral pontine tegmentum of mammals. General 
statements on a brain region are only meaningful when this region is a single entity (or 
“functional system”) (cf. Van Dongen 1980. pp. 217-266); under the above mentioned 
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definition. the LC seems to be an entity. and a further subdivision of the LC (cf. Amara] 
and Sinnamon. 1977: Grzanna and Molliver, 1980) need not to be made in thib paper. 
because the parts of the LC seem to be similar under the aspect of the NE transmisxion. 

An implication of this definition is, that cells containing other putative neurotransmitters 
found in the region of the LC will not be taken into consideration. because no indica- 
tions have been published in favour of a “co-existence” of these putative ncurotrans- 
mitters and NE in a single cell. These compounds are serotonin (5-HT: Sladek and 

Walker. 1977; Pickel et t/l.. 1977a. Leg& ct trl.. 1978a). substance P (Ljungdahl ot r/l., 
1978a) and neurotensin (Uhl cut (I[.. 1979b). while also a number of small non-NE ccl15 

in the region of the LC have been described (Ramon-Moliner 1974: Swanson 1976b: 
Shimizu rr t/l.. 1978. 1979). 

1.3. DEFINITIONS IN NEUROCHEMISTRI 

Many lists of criteria for identifying a compound as a neurotransmitter. neuromodula- 
tor. neurohormone and so on have been published (cf. Werman, 1966; Florey, 1967: 

Davidson, 1976; Torda. 1977a; Barchas et al., 1978; Orrego, 1979; Iversen, 1979; Dis- 
mukes and commentaries 19791. Given the incomplete knowledge on this subject. a 
classification of neuroactive compounds must be flexible (Dismukes 1979). but the words 
used must also be sharply defined. when one wants to make informative and falsificable 

statements. In the first part of this paper. the words “neurotransmitter” and “(non)synap- 
tic neurotransmitter” will be used as defined below (somewhat in line with Dismukes 
1979). while in the latter part some comments on “neurotransmission” and “neuromodu- 

lation” will be made. 

1.4. DEFINITION OF “NEUROHUMOR” 

Compound C is a “neurohumor” of neuron N (or group of neurons N). when the 
following statement5 are confirmed experimentally : 

1. C is present in neuron N. 

2. C is synthetized by neuron N. 
3. Electrical stimulation of neuron N causes secretion (release) of C. 

4. C interacts with specific sites of action (receptors). 
5. At least one system exists which terminates the effect of C at its target site. 
6. Direct application of C mimics the effect of increasing its endogenous concen- 

tration: this effect is identical in all respects. including pharmacological. 

1.5. DEFINITION OF “NEUROTRANSMITTER” 

Compound C is a “neurotransmitter” of neuron N. when the following statements are 
confirmed experimentally : 

1. C is a neurohumor. 
2. The site of release of C is relatively close to its site of action, and C is not trans- 

ported to its site of action by the cerebrospinal fluid (CSF) nor the blood. 

Note that under this definition, the concept “neurotransmitter” also includes what many 
authors call “neuromodulator” (Torda. 1977a; Barchas et L~I., 1978; commentaries in 
Dismukes. 1979). The concept “neuromodulator” as used by Florey (1960. see also com- 
mentary in Dismukes 1979) and Orrego (1979) is not included: a “neuromodulator” as 
defined by these authors might be released (1) independently from a neuron’s firing rate. 

and (2) also by elements other than neurons. 

1.6. DEFINITIONS OF “(NON)SYNAPTIC NEUROTRANSMITTER.’ 

Compound C is a “synaptic neurotransmitter” of neuron N. when the following state- 
ments are confirmed experimentally: 

1. C is a neurotransmitter. 
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2. C is present in the presynaptic part of a morphologically identified specialized 

synapse (cf. Cobb and Penthreath, 1978. Fig. 5a-g). C acts transsynaptically: the target 

site (receptor) of C is located in the postsynaptic membrane. 

Compound C is a “nonsynaptic neurotransmitter” of neuron N. when the following 

statements are confirmed experimentally: 

1. C is a neurotransmitter. 

2. C is present in non-synaptic terminals, i.e. terminals without synaptic specializations 

(Cobb and Penthreath, 1978, Fig. 5h). 

Note that under this definition, “synaptic neurotransmitter” is a broader concept than 
“neurotransmitter” as used by Barchas et al. (1978): according to th: latter authors the 
action of a “neurotransmitter” must be reflected as excitatory or inhibitory post-synaptic 
potentials. The “nonsynaptic neurotransmitters”, as defined above and by Dismukes 

(1979). are partly overlapping with the “neuromodulators” according to Barchas et al. 
(1978); a “nonsynaptic neurotransmitter” is released from a neuron, while a “neuromodu- 
later” according to Barchas cf ul. (1978) might be released from other elements; more- 
over, a “neuromodulator” is said to have “neuronal effects”. so its target elements prob- 

ably must be neurons, while the target elements of a “nonsynaptic neurotransmitter” are 
left unspecified. 

1.7. DEFINITION OF NEUROHORMONE 

Compound C is a “neurohormone” of neuron N, when the following statements are 
confirmed experimentally: 

1. C is a neurohumor. 
2. The site of release of C is remote from its site of action; C is transported to its site of 

action by the CSF and/or the blood. 

2. Is NE a Neurotransmitter of the LC? 

2.1. PRESENCE OF NE 

2.1.1. Ocerall pattern qf NE distribution 

Abundant evidence has been presented that NE is present in the cell bodies, dendrites, 
axons, varicosities and synapses of the LC cells of the rat (Amaral and Sinnamon, 1977). 

In all mammals investigated a CA-containing presumed homologue of the rat’s LC has 
been found, and this CA has been demonstrated to be NE both in the cat and in man 

(Jones et al. 1977a; Farley and Hornykiewicz, 1977, Marchand et cd.. 1979a, b). NE is 
transported somatofugally from the LC cells bodies (Levin et d., 1976, Levin and Stolk, 
1977). At the moment, the presence of NE in the cell bodies, varicosities and synapses of 
the LC in the rat is generally accepted. The presence of NE (as revealed by histofluor- 
escence) has been used in mapping studies of the efferent fibers of the LC (e.g. Unger- 

stedt. 1971a; Lindvall and Bjorklund, 1974). and the decrease in telencephalic NE after a 

lesion of the LC has been used to check the completeness of the lesion (cf. references in 
Clark. 1979: Mason. 1979). 

2.1.2. Do the caricosities rele(1.w NE? 

The axons of the LC cells are beaded fibers consisting of varicosities and thin intervari- 
case segments (Descarries et al., 1977; Beaudet and Descarries, 1978). I have three 
reasons to suppose that NE is released from these varicosities (cf. Beaudet and Descar- 
ries, 1978). 

1. The varicosities contain NE (Dahlstram and Fuxe, 1964; Lindvall and Bjorklund, 



1974) and vesicles with the appearance of cxocytotic (“synaptic”) vesicles (Hiikfelt VI (r/.. 
1968: Swanson c’f (11.. 1977; Descarries VI cl/.. 1977; Sakumoto et t/l.. 1977: Koda cv r~/.. 
1978a. b: Zecevic and Molliver. 1978; Beaudet and Descarries, 1978). 

2. The varicosities contain immunoreactive dopamine-[Ghydroxylase (DBH) (Swanson 
and Hartman 1975; Lundberg er rrl.. 1977; Cimarusti c’t LI/.. 1979). and therefore prohabl) 
have a synthetic system for NE. 

3. The varicosities accumulate exogenous ‘H-NE (Descarries cf (I/.. 1977) and other 
CAs (5-OHDA. Zecevic and Molliver. 1978). and therefore probably have a specialized 
re-uptake system for NE. 

The varicosities share these 3 properties with classical synaptic boutons; therefore they 
probably release NE. Although such non-synaptic release of NE has not been definitively 
demonstrated, it is assumed that the varicosities of central NE fibers are terminals further 
in this paper, as has been suggested for peripheral NE fibers (Haefely 1972). 

2.1.3. Thr ot~twwwct~ of fire LC ending.\ 

The frequent occurrence of large numbers of NE terminals without synaptic specializ- 
ations in LC target regions has been described by authors using various techniques to 
identify NE terminals (Amaral and Sinnamon. 1977; Descarries et al., 1977; Swanson rt 
al., 1977; Sakumoto et al., 1977; Koda rt al., 1978a, b; Cimarusti. 1979; Ouimet, 1979; 
Beaudet and Descarries. 1978; but not by Zecevic and Molliver, 1978). The similarities 
between the NE terminals of the peripheral sympathetic system and of the LC terminals 
has been noted (Amaral and Sinnamon, 1977; Descarries et al., 1977; Koda and Bloom, 
1977; Koda et a/., 1978b). Note that this implies that the words “presynaptic” and 
“postsynaptic” are inadequate for the NE transmission; instead of these words, “of the 
terminal” and “of the target cell” will be used respectively. 

2.1.4. LC terrninrrl.~ on neurms. .s1mp.st’,5 

In all LC terminal regions investigated some NE terminals are described as being in 
close contacts with neuronal somata and dendrites. In the cerebellum and the hippo- 
campus. these contacts are predominantly on the Purkinje and pyramidal cells respect- 
ively (Swanson and Hartman, 1975: Amaral and Sinnamon. 1977: Loy r’r ~1.. 1980). while 
the NE terminals in the spinal cord and neocortex are found on various morphological 
types of neurons (Amaral and Sinnamon 1977: Jordan et LI/.. 1977). Some NE terminals 
have synaptic specializations (Nelson et (I/.. 1973, Descarries rt (I/., 1977: Koda et crl.. 
1978a. b; Zecevic and Molliver. 1978: Beaudet and Descarries, 1978: Cimarusti rt trl.. 
1979); these synapses were found to be either symmetrical or asymmetrical synapses on 
dendrites or somata. 

2.1 S. LC rtv7ninal.s on crrehrtrl hlooti wsse1.f 

The cerebral blood vessels receive NE terminals from the ganglion cervicale superius 
and from central NE cells. The endings of the ganglion cervicale superius terminate on 
large vessels. and the LC terminals are contiguous for some distance with the small 
cerebral blood vessels (Amaral and Sinnamon, 1977: Itakura er trl., 1977: De Witt, 1978). 
The proportion of the LC terminals. however. that end on cerebral capillaries is small 
(Itakura rt rrl.. 1977). The ultrastructure of the LC terminals on small blood vessels 
indicates that these terminals indeed affect the blood vessels (Swanson et trl.. 1977: 
Itakura t/r (I/.. 1977: but not Edvinsson and MacKenzie. 1977). 

2.1.6. NE rtwvintrls on othtv CNS elements 

NE terminals have been described in the eminentia mediana. which receives an LC 
input (Palkovits et trl.. 1977b: Ztiborsky cur LI/.. 1977). as being in close contact with 
ependymal cells. neurosecretory fibers and other axdns; no NE terminals with synaptic 
specializations have been found here (Sakumoto et trl.. 1977). Similar NE terminals have 
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been found in the area postrema (Torack L’I trl.. 1973). but it is questionable whether their 

origin is the LC. It is possible that NE released from these terminals reaches the ventricle 

(cf. Ad& et ul., 1979: Perlow rf ~1.. 1980). 

2.2. SYNTHESIS OF NE 

The enzymes necessary for the synthesis of NE are present in the LC. Tyrosine hydroxy- 

lase (TH) is demonstrated enzymatically in the LC region (Saito rt al.. 1977a; Bullard et 
01.. 1978). and immunohistochemically in the LC bodies (Hokfelt et al., 1976; Nagatsu et 
ul.. 1979a). Immunoreactive DBH is present in the LC cells bodies, axons and terminals 
(Hartman and Udenfriend 1972; Swanson and Hartman 1975: Grzanna et ul.. 1977. 

1978; Cimarusti et ml., 1979; Nagatsu et ul., 1979a); the presence of immunoreactive or 
enzymatically active DBH has been used in mapping studies of the LC efferents (Ross 
and Reis 1974; Swanson and Hartman 1975). Immunoreactive DBH is present in small 
vesicles with the appearance of exocytotic (“synaptic”) vesicles, as in large ones (Lund- 
berg pt cd.. 1977; Cimarusti et al.. 1979). DBH has been reported as being present in all 

vesicles of a DBH-positive terminal, so that single vesicles would contain both NE and 
DBH (Lundberg et ul., 1977) but this is still the subject of discussion (Cimarusti rt aI., 
1979). Other substances probably related to the synthesis of NE are also present in the 
LC: copper (Yoshinaga and Shimizu, 1968: cf. Friedman and Kaufman, 1965; Molinoff 
et LII., 1971; Lander and Austin 1976) vitamin A (lijima 1977. 1978) and reduced pterins 
(Bullard et u/., 1978). Moreover, 3H-DA injected into the LC region is converted inio 

3H-NE, and transported somatofugally (Levin et crl., 1976; Levin and Stolk. 1977). 

2.3. RELEASE OF NE 

2.3.1. Exprrimenttrlly induced NE releusr 

Only in one in rim study (Tanaka @t ul.. 1976) has a direct measurement of the NE 
release after the electrical stimulation of the LC been described; NE release was measur- 

able only in the presence of an NE uptake inhibitor (desipramine). The in vivo release of 
NE by electrical stimulation of the LC has been measured indirectly as an increase in the 

levels of 3-methoxy-4-hydroxyphenylethylene glycol (MHPG). the main metabolite of 
central NE (Korf et L/I.. 1973a: Crawley et ul.. 1978, 1979a; cf. Rutledge and Johanson. 
1967; Schanberg et trl., 1968). Release of central NE can be increased in rim by depolar- 
izing manipulations (electrical stimulation or K *-ions) or by amphetamine (Dismukes 
and Mulder, 1976; Dismukes et trl., 1977: Lane and Aprison. 1977: Kant and Meyerhoff. 
1977a. 1978: Rutledge. 1978). 

2.3.2. Rrlrusr into thr rvntricle? 

The NE content of the cerebrospinal fluid (CSF) is highest during awake periods 
(Ziegler et d., 1976; Perlow et (I/., 1978), when also the LC cells’ firing rate is highest 

(Foote et (II., 1980). The CSF NE is most probably (at least partly) released by LC 

neurons, since (1) the CSF NE is of central and not of peripheral origin (Ziegler et tri.. 

1977a, Perlow et al.. 1978). and (2) HRP-labeled LC cells have been found after injection 
of HRP into the lateral ventricle (Ader et (II.. 1979). 

2.4. INACTIVATION AFTER RELEASE 

2.4.1. Introduction 

The action of a neurotransmitter must after a while come to an end: this termination 
of action can be accomplished in 3 different ways: 

1. Uptake of the compound by cells (usually the cell from which it was released. 
re-uptake). thereby removing it from its site of action. 

2. Metabolic conversion of the compound into metabolites which are inactive. or have 
at least a different action. 

3. Diffusion of the compound away from the site of action. 



122 PAUL A. M. \AN DONC;FN 

TABLE 1. EFFECT OF ELECTRICAL STIMULATION OF THE LC AND OF IONTOPHORETICAL 
APPLICATION OF NE ON THE SAME CELLS (FOR REFERENCES SEE BELOW) 

-I_ 
Effects References 

-. 
Membrane potential 
This hyperpofarization is: 

reduced by 
enhanced by 

Membrane r&stance 
1. NE/LC-induced suppression 

This suppression is: 
antagonized by 

reduced by 

enhanced by 

Response to stimuli 
2. NE/LC-induced activation 
This activation is: 

antagonized by 
Response to stimuli 

hyperpolarization 

prostaglandines (E) 
papaverine 
increase 

P-blocking agents 

prostaglandines (E) 
glycoprotein 
lithium ions 
papaverine 
desipramine 
reduced 

z-blocking agents 

39 

39 
39 
39 
39. 47. 48, 57. 89, 
96, 146, 148 

27. 47. 48. 57. 96. 
146 
39. 47, 48 
89 
148 
39. 41, 48 
47.48 
146, 161 
182 

182 
182 

KU lo the refrrenc,rs in [he rubles 1 umi 2. yfecrs of‘rhr LC and of NE on single unir 
uC(iL’??: utd irs mechanism (for rurlirr urricles SW rhr rrriew of Sulmoirughi 1 YM). 

1. Engberg and Ryall. 1966: 2. Weight and Salmoiraghi, 1966a: 3. Weight ahd 
Salmoiraghi, 1966b; 4. Biscoe et crl.. 1966: 5. Avanzino et trl.. 1966: 6. Legge tit ~1.. 1966: 
7. Weigh; and Salmoiraghi. 1967; 8. Yamamoto, 1967: 9. Phillis and Y&k. 1967; IO. 
Tebecis. 1967: 11. Phillis et al.. 1968a: 12. Boakes er al.. 1968a: 13. Phillis ef al., 1968b; 
14. Roberts and Straughan, 1968; 15. Johnson et al.. 1969a; 16. Johnson et al., 1969b; 
17. Engberg and Thaller, 1970: 18. Engberg and Marshall, 1971: 19. H&Ii er trl.. 1971; 
20. Boakes et ul.. 1971: 21. Gonzales-Vegas, 1971; 22. Gonzales-Vegas and Wolsten- 
croft, 197la; 23. Gonzales-Vegas and Wolstencroft. 1971b: 24. Siggins et ul.. 197la; 25. 
Siggins et al.. 197lb; 26. Hoffer et al.. 1971a: 27. Hoffer et al., 197lb; 28. Godfraind and 
Pumain, 1971; 29. Siggins er ok, 1971~; 30. Stone. 1971; 31. Frederickson CI ul., 1971; 
32. Boakes et al., 1972; 33. Godfraind and Pumain, 1972; 34. Frederickson et al., 1972; 
35. Stone. 1972; 36. Engberg and Marshall, 1973; 37. Sasa and Takaori. 1973; 38. 
Anderson et trl.. 1973: 39. Hoffer et d., 1973; 40. Stone, 1973; 41. Nelson et ul., l&73: 
42. Sasa et ul., 1974a; 43. Sasa et ul., 1974b; 44. Boakes rf ul.. 1974: 45. Lake and 
Jordan, 1974; 46. Nakai and Takaori, 1974; 47. Segal and Bloom. 1974a: 48. Segal and 
Bloom, 1974b; 49. Sepal, 1974; 50. Phillis, 1974a. 51. Phillis. 1974b; 52. Phillis and 
Limacher, 1974; 53. Yarbrough er d., 1974; 54. Bevan rr (II.. 1974a; 55. Bevan et ul., 
1974b: 56. Sasa rt cd.. 1975: 57. Freedman and Hoffer, 1975: 58. Foote et ul., 1975; 59. 
Gilberi et uI.. 1975; 60. Phillis et al., 1976; 61. Jordan and McCrea, 1976; 62. Kirsten 
and Sharma. 1976; 63. Sasa ul ul., 1976; 64. Freedman et ul.. 1976. 65. Siggins et ul.. 
1976; 66. Nathanson et ul., 1976; 67. Galaher and Aghajanian, 1976; 68. Wang rl ul., 
1976; 69. Bunney and Aghajanian, 1976a: 70. Bunney and Aghajanian. 1976b; 71. Segal 
and Bloom, 1976a; 72. Segal and Bloom. 1976b; 73. Segal. 1976: 74. Vetulani ef u/., 
1976a; 75. Vetulani er al., 1976b; 76. Skolnick and Daly, 1976a; 77. Skolnick and Daly, 
1976b; 78. Yarbrough, 1976; 79. Glhwiler, 1976; 80. Ahn et al., 1976; 81. Cedarbaum 
and Aghajanian, 1976; 82. Bockaert et al., 1977; 83. Bonkowski and Dryden. 1977; 84. 
Jordan et al.. 1977; 85. Sasa et al., 1977a; 86. Freedman et al., 1977; 87. Wise and 
Hoffer, 1977; 88. Nathanson. 1977; 89. Torda, 1977; 90. Harden ef (II., 1977; 91. 
Vetulani et al.. 1977: 92. Anderson et al.. 1977; 93. Sasa et al., 1977b; 94. Bevan rt al.. 
1977; 95. Sharma, 1977; 96. Phillis and Kostopoulos. 1977; 97. Iversen, 1977; 98. 
Nathanson, 1977; 99. Rasmussen and Goodman, 1977; 100. Desaiah and Ho, 1977: 
101. Nishino and Koizumi. 1977; 102. Cedarbaum and Aghajanian, 1977; 103. Aghaja- 
nian et al., 1977; 104. Stone and Taylor, 1977; 105. Headley et al., 1978; 106. KrnjeviC 
rr al., 1978; 107. Sinnamon, 1978; 108. Taylor er al., 1978; 109. Takemoto er al., 1978. 
110. Nishino and Koizumi, 1978; 111. Torda, 1978; 112. Winokur and Beckman, 1978; 
113. Perkins and Whitehead, 1978; 114. Finch et al.. 1978; 115. Dillier et al., 1978; 116. 
Stone and Taylor, 1978a; 117. Stone and Taylor. 1978b; 118. Stone and Taylor. 197%; 
119. Stone and Taylor, 1978d; 120. Ewart and Logan, 1978a; 121. Ewart and Logan, 
1978b; 122. Ewatt and Logan, 1978~; 123. Hicks and McLennan, 1978; 124. Reader, 
1978; 125. Bevan et al.. 1978a; 126. Bevan et al., 1978b; 127. Harris, 1978; 128. Jones, 
1978; 129. Hauser, 1978; 130. Robinson, 1978; 131. Skolnick ef al., 1978a; 132. Skol- 
nick et ul., 1978b; 133. Reches, 1978; 134. Nimitkitpaisan and Skolnick, 1978; 135. 
Tsang and Lal, 1978; 136. Tsang et al., 1978; 137. Wu and Phillis. 1978; 138. Schaefer 
et al., 1978; 139. Belcher et ul., 1978; 140. Cedarbaum and Aghajanian. 1978: 141. 
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2.4.2. Rwpt& 

Re-uptake is the main cause of inactivation of released central NE (cf. Iversen, 1971). 
Release of NE after electrical stimulation of the LC is only measurable in the presence 
of an uptake inhibitor (Tanaka et al., 1976). so central NE is taken up quickly and 

efficiently. Moreover, central NE terminals appear to accumulate exogenous 3H-NE 
(Descarries et ul., 1977). 

Released central NE is enzymatically inactivated by monoamine oxidase (MAO). cate- 

chol-O-methyl transferase (COMT) and aldehyde reductase. These conversions are rapid. 
and the resulting metabolite is MHPG or its SO,-conjugated form (Rutledge and Johan- 

son. 1967: Schanberg et ul., 1968). Enzymatically active MAO and COMT are present in 
all the CNS regions investigated (Saavedra et NI., 1976b; Hirano et trl.. 1978). In the brain 
immunoreactive COMT is demonstrated only on non-neuronal elements. such as epen- 

dymal and other glia cells. and the choroid plexus. but the presence of small quantities 
on neurons cannot be excluded (Kaplan et al., 1979). COMT is regarded as preventing 
the free diffusion of active NE through the CNS. NE released after electrical stimulation 
of the LC is rapidly converted into MHPG (Korf et (I/.. 1973a: Crawley et trl.. 1978. 

1979a). 

2.5. SPECIFIC RECEPTORS 

In the CNS, several different CAs and their receptors are present: these receptors have a 
varying affinity for NE and for adrenoceptor agonists and antagonists. In binding studies 
the central adrenoceptors, which are a subpopulation of the CA receptors, are therefore 

difficult to characterize. The available data however indicate that the central NE binding 

sites (“adrenoceptors”) are similar to the peripheral ones: rl and x?, and [jr and p2 
adrenoceptors have been described (Nahorski 1978: Bylund 1978; UPrichard and 
Snyder 1979; Minneman et al., 1979a, b; Dolphin rt al.. 1979). With fluorescent probes r- 

and /&adrenoceptors have been described, and their overall localization was in agreement 
with the localization of the NE terminals (cf. Melamed rt ~1.. 1977; Atlas and Melamed, 
1978; Young and Kuhar, 1979), but evidence has been published that at least part of 
these data are based on artifacts (Barnes cjt al., 1980; Correa c’t rrl.. 1980). The adreno- 

ceptors are present on LC cells, LC terminals and LC target cells (Cedarbaum and 
Aghajanian. 1977; Berthelsen and Pettinger. 1977: and see below). 

2.6. IDENTICAL EFFECTS (ALSO PHARMACOLOGICALLY IDENTICAL) 

2.6.1. Introtluc~tion 

The effects of activity of the LC cells or of release:application of NE on the LC target 

cells will be discussed in more detail, because some of the conclusions are relevant to the 
understanding of the actions of the LC and NE. The effects of electrical stimulation of 

Woodward <‘I (I/.. 1979: 142. Horn and McAfee. 1979: 143. Satoh VI t/l.. 1979: 144. 
Marshall and Engberg. 1979; 145. Champagnat er I!/.. 1979: 146. Sass and Takaori. 
1979; 147. Moises et trl., 1979: 148. Siggins ef trl., 1979: 149. Reader er trl.. 1979: 150. 
Stone and Taylor. 1979; 151. Korf and Sebens. 1979: 152. Herbst PI trl.. 1979: 153. 
Nathanson and Glaser. 1979: 154. Porsche and Stefanovich. 1979; 155. Wu and Phillis. 
1979; 156. Akagawa and Tsukada. 1979: 157. Schaefer er ~1.. 1979: 158. lgarashi rr trl.. 
1979: 159. Phillis and Wu. 1979; 160. Gothert rr LI/.. 1979; 161. Sass rr u/.. 1979: 167. 
Szabadi, 1979: 163. loseliani and Dzhamaspishvili, 1979: 164. Vorob’ev and Nesterova. 
1979; 165. Moises and Woodward. 1980; 166. Olpe ef trl.. 1980: 167. White and Neu- 
man. 1980: 168. Chikamori rr ul.. 1980: 169. Lin. 1980; 170. Herrhng. 1980a: 171. Fung 
and Barnes. 1980: 172. Freedman and Marwala. 1980: 173. Baraban and Aghajanian. 
1980; 174. Ewart. 1980; 175. Fuenmayor and Gonzalez-Vegas. 1980; 176. Waterhouse 
ef ctl.. 1980; 177. Sasa et trl., 1980: 178. Herrling. 1980b: 179. Segal. 1980: 180. Rogawski 
and Aghajanian. 1980a: 181. Solano-Flores FI II/.. 1980: 182. Rogawski and Aghajanian. 
1980b: 183. Rogawski and Aghajaman. 1980~: 184. Taylor and Stone. 1980. 
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the LC, and of iontophoresis of NE on LC target neurons will be mentioned extensively. 
while the effects on other elements (cerebral blood vessels, glia cells and the CSF) will be 
mentioned shortly. 

2.6.2. LC- and NE-induced eflects on neurom 

If NE is a neurotransmitter of the LC, then electrical stimulation of the LC must have 
effects on the LC target neurons identical to the effects of iontophoresis of NE. This is 
clearly the case (Table 1). It has to be admitted that strict electrophysiological tests have 
never been used to make certain that the target cell is directly (i.e. via adrenoceptors on 
the neuron from which the recording is made) influenced by the LC. Yet these effects are 
assumed to be evoked directly, because: (1) the regions investigated are LC target 
regions, (2) NE synapses and terminals have been identified in these regions (cf. Van 
Dongen, 1980), and (3) most authors agree on the effects of the LC. The response type 
described below is considered to be the typical LC/NE-induced response. 

2.6.3. Hyperpolarization and suppression 

NE hyperpolarizes its target neurons; depolarizations have only been described in one 
study (Fung and Barnes 1980) with intracellular recording (Tables 1 and 2). Concomitant 
with these hyperpolarizations, the “maintained activity” of the target cells was sup- 
pressed. (For reasons to be discussed below, care should be taken in using the words 
“exitation” (or “facilitation”), “inhibition”, “activation” and “suppression”; in this paper. 
“activation” and “suppression” will be used in the meanings “increase” and respectively 
“decrease in the firing rate in the maintained activity”, i.e. only as a description of an 
effect without implications for its mechanism, cf. Van Gisbergen et al.. 1974.) Electrical 
stimulation of the LC causes suppression with a long latency (30msec, nucleus spinalis 
nervi trigemini, Sasa and Takaori, 1973; 40-70msec, hippocampus, Finch et al., 1978) 
and a long duration (typical 120msec, Sasa and Takaori, 1973; Oishi et al., 1977; Daug- 
herty et al., 1977; Finch et al., 1978b; Igarashi et al., 1979a; Aston-Jones, 1980); after 
prolonged stimulation (for instance 10 set at 10 pulses/set) the LC-induced hyperpolariz- 
ations and suppression can last as long as 60 set (Hoffer et al., 1973 ; Segal and Bloom, 
1974a; Siggins et al., 1976; Sinnamon et al., 1978; Takemoto et al., 1978). Since in awake 
animals the firing rate of the LC cells is about 10 spikes/set (Hobson et al., 1975: Foote 
et al., 1980; Sakai and Jouvet, 1980), the LC causes a tonic suppression of the “main- 
tained activity” of its target cells during such periods. During the LC/NE-induced hyper- 
polarization, the resistance of the membrane to transmembrane ion currents is increased 
(Table 2). An increase in the membrane resistance must be effected by closure of the ion 
channel with the smallest resistance, i.e. a closure of the K+ channels. 

2.6.4. LCINE-induced activations? 

A relatively small number of authors report the occurrence of NE-induced activations 
(Table 2, Szabadi 1979; Rogawski and Aghajanian 1980a, b, c; Fung and Barnes, 1980). 
These may either be evoked via an interneuron, be due to NE-induced vasoconstriction 
of cerebral blood vessels (Stone, 1971), or be the effect of interaction of NE with receptors 
for DA, octopamine or other compounds (cf. Hicks and McLennan, 1978, Bevan ct ul.. 
1978a, b), but they could also be NE-induced activations evoked via receptors for which 
NE is the endogenous ligand (adrenoceptors) located on the neuron from which the 
recording is made (possibly cl-adrenoceptors, Bevan et al., 1977; Szabadi, 1979; Rogawski 
and Aghajanian 1980a, b, c; Fung and Barnes, 1980). 

2.6.5. Receptors involved 

In studies where the effects of electrical stimulation of the LC and iontophoresis of NE 
on the same neuron have been investigated, most LC/NE-induced effects came about via 
/I-adrenoceptors, blocked by sotalol, propranolol and fluphenazine (Tables 1 and 2). 
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mechanism of the NE-induced suppression 

ATP cyclic AMP 
phosphorylation 

FIG. I Hypothetical mechanism of NE-induced suppression. hyperpolarization and decrease in 
membrane conductance: this mechanism seems to be the most plausible explanation of the NE 

effects on neurons as presented in the literature. 

therefore a /?-adrenoceptor is indicated in the figure on the mechanism of the NE- 
induced suppression (Fig. 1). The only well documented example of LC/NE-induced 
suppression via a-adrenoceptors is the NE-induced lateral suppression of the LC cells 

(Cederbaum and Aghajanian, 1976, 1977, 1978; Aghajanian rt nl., 1977); and the only 
well documented example of NE-induced activations via x-adrenoceptors is the NE- 

induced activation of relay cells of the lateral geniculate nucleus (Rogawski and Aghaja- 
nian, 1980a, c). In a number of studies, effects of central NE via a-adrenoceptors on other 
organs or on behavior have been reported (sleep: Putkonen rt LII., 1977; eating: Leibo- 
witz er uI., 1978; endocrine: Weiner and Ganong, 1978; spinal reflexes: Kuraishi rt (II.. 
1979; startle response: Davis et ul.. 1979; conditioned avoidance: Hawkins and Monti. 
1979). At the moment it is not at all clear whether these efrects are due to interactions of 

adrenoceptor agonists and antagonists with adrenoceptors. or with receptors for which 
DA, octopamine or E is the endogenous ligand, and whether these receptors are located 
on neuronal cell bodies, on terminals or on other CNS target elements (blood vessels. 
glia cells). 

2.6.6. NE unrl c)*clic AMP 

It is now generally accepted that NE causes its suppression through an increase in the 

adenylate cyclase activity, the enzyme that produces cyclic AMP (Korf and Sebens, 1979. 
reviews Iversen, 1977a, Nathanson, 1977). Both NE and cyclic AMP cause hyperpolariz- 
ation with an increase in the membrane resistance (Siggins et trl., 1971a; Nathanson. 
1977). Adenylate cyclase inhibitors diminish LC- and NE-induced responses (Segal. 1974: 
Nathanson YT ul., 1976. 1977; Taylor et ~1.. 1978: Reches. 1978; Siggins et (11.. 1979: 

Ebstein et (II., 1980). while on the other hand, inhibitors of phosphodiesterase (the 

enzyme that inactivates cyclic AMP) increase the LC-, NE- and cyclic AMP-induced 

responses (Siggins et al., 1971b; Hoffer et trl., 1971b. 1973; Segal and Bloom, 1974a. b: 
Gtihwiler, 1976). Since the response of cerebellar Purkinje cells to NE applied iontophor- 
etically is much slower than to cyclic AMP (or GABA) ejected from the same electrode 

(Siggins rt al., 1971b; Hoffer, 1971b: Gghwiler. 1976), a slow process must be present 
between the release of NE and the synthesis of cyclic AMP. Not only electrophysiologi- 
tally, but also biochemically. the effects of electrical stimulation of the LC. and of 
application of exogenous NE on the production of cyclic AMP are identical (Korf t’r trl.. 
1979). The activation of adenylate cyclase is not a unique property of NE; DA and some 

other neurohumors also activate adenylate cyclase (Nathanson. 1977). 

2.6.7. NE und pro.stuylantlins 

The prostaglandins of the E series (PGE,, PGE,) diminish the effects of the LC’s 
activity or of iontophoresis of NE on the LC target cells (Hoffer PI trl.. 1973: Segal and 
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Bloom, 1974a, b), but not the effects of cyclic AMP (Siggins cr trl.. 197 1 h: Hoffer (‘I (II.. 
1971b). It has been suggested that the PGEs reduce the NE-induced increase in the 
adenylate cyclase activity (Hoffer et ul., 1971b; Nathanson. 1977). It IS remarkable that 
the effect of prostaglandins on the NE-induced suppression is opposite to their action on 
the DA-induced effects (Nathanson, 1977). 

2.68. NE und Nu,K-ATPase 

Ample evidence has been presented that NE increases the activity of the ouabain- 
sensitive Na,K-ATPase (the so-called Na,K-ATPase) and of the ouabain-insensitive 
Na,K-ATPase (the so-called Ca,MG-ATPase). The Na,K-ATPase has attracted special 
interest, since “the Na,K-ATPase is thought the enzymatic representation of the trans- 
membrane Na-K-pump, which could have electrogenic properties under some con- 
ditions” (Ewart and Logan, 1978b). Since the NE-induced suppression of cerebellar Pur- 
kinje cells and somatosensory cortical cells is diminished by inhibitors of Na,K-ATPase 
(Phillis et ul., 1974; Yarbrough, 1976; review, Phillis, 1976) NE causes the suppression of 
its target cells through an increase in the Na,K-ATPase activity. This action of NE on an 
electrogenic Na,K-ATPase can explain the NE-induced hyperpolarization. Moreover, 
such an action can explain the difficulties in finding a reversal potential for the NE- 
induced effects (Marshall and Engberg, 1979). It is remarkable that no increase in the 
activity of the Na,K-ATPase by cyclic AMP has been found (Phillis. 1976: Akagawa and 
Tsukada, 1979). The activity of the NaK-ATPase is increased not only by NE, but also 
by DA, while ACh, Glu or GABA have no effect on the Na,K-ATPase activity (Yar- 
brough, 1976; Desaiah and Ho, 1977: Akagawa and Tsukada. 1979: Schaefer et al.. 1979). 

2.6.9. NE und calcium ions 

The NE-induced suppression of somatosensory cortical cells is reduced by compounds 
interfering with Ca2+ transport and binding (Phillis et ul., 1974; reviews, Phillis. 1974, 
1976). The action of Ca2 + could be due to interactions of Ca2’ with adenylate cyclase 
and/or phosphodiesterase (Ahn et al., 1976; Nathanson et al., 1976; review, Rasmussen 
and Goodman, 1977), or to a change in membrane properties either due to binding of 
Ca2+ to the membrane, or due to fluxes of Ca 2+ through it (Phillis, 1974. 1976; see also 
Orrego, 1979). 

2.6.10. A hypothetical mechanism of the NE-induced suppression 

The data on the mechanism of the NE-induced suppression are summarized in Fig. 1. 
NE causes a two-fold action: (1) an increase in the activity of an electrogenic ion pump 
which causes an outward current of Na+ (or perhaps K+ or Ca”‘), and consequently a 
hyperpolarization (Phillis 1974), and (2) a closure of K ’ channels which is reflected as an 
increase in the membrane resistance (cf. Phillis, 1976; Marshall and Engberg, 1979). In 
this process, cyclic AMP, prostaglandins, Na,K-ATPase and Ca2+ are involved. It has to 
be admitted that no interpretation of the mechanism of NE action on the target cell 
membrane has ever been presented in the literature that is consistent with all the findings 
mentioned above, and this drawback applies to my interpretation too (Fig. 1). (Points of 
agreement that NE and cyclic AMP cause hyperpolarization with an increase in the 
membrane resistance, and that NE does cause an ouabainsensitive suppression, while an 
inconsistent point is that cyclic AMP has been reported as not influencing the Na,K- 
ATPase activity in the CNS. I cannot however think of a simple interpretation that is in 
agreement with all data.) 

2.6.11. Actions of NE on non-neuronal elements in the CNS 

NE terminals on other CNS elements than neurons, have been described (Section 2.1.). 
but their action is much less investigated than the action of NE terminals on neurons. 
Conflicting data have been published on the effects of activity of the LC on the cerebral 
blood flow (review, Van Dongen, 1980, pp 61-63). My interpretation of the data found in 
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the literature is that activity of the LC cells causes an increase in the cerebral blood flow 

and in the cerebral metabolism in the LC target regions (cf. Edvinsson. 1975; Edvinsson 
et ul., 1979: Harik et u1., 1979; Cummins and Keller, 1979; but see also Schwartz et ul., 

1978; Abraham, 1979). NE causes phosphorylation and an activation of carbonic anhyd- 
rasc. in glia cells of the cerebral cortex (Church et u/., 1980). The effects of NE reaching 
the ventricle are unclear. Intracerebroventricular injections of NE and adrenoceptor 
agonists or antagonists have yielded inconsistent results (cf. Ramm, 1979) and it is even 
unclear whether endogenous NE just leaked away into the CSF having no action of its 
own and being rapidly degraded. or whether it interacts with adrenoceptors influencing 
someway the cerebral information processing. 

2.7. CONCLUSIONS 

2.7.1. NE us u newotran.smitter of the LC 

Taking together the above mentioned data on LC terminals and the effects of NE 
released from the LC terminals, the above mentioned criteria for “neurotransmitters” and 
so on, and using the criteria not too conservatively, my conclusion is: NE is a synaptic 
trntl u nonsynaptic neurotransmittrr of the LC cells, and NE released from LC terminuls into 
the ventricle might he u CSF neurohormone. What then are the similarities and differences 

between the effects of synaptic and nonsynaptic released NE? The above mentioned 

effects of electrical stimulation of the LC probably come about through synaptic and 
nonsynaptic terminals and thus reflect the similarities between them. Some speculative 
remarks can be made on the differences. A synaptic release of NE assures strictly local 
effects with a fixed. relatively short latency on fixed target elements, while freely released 
NE may have more distant effects with a longer, variable latency on variable target 
elements. Distant effects of freely released NE, however. are probably still restricted, 
because (1) freely released NE will be rapidly degraded and inactivated by MAO and 
COMT, which are present throughout the CNS. and (2) the distribution of central 
adrenoceptors is similar, but not identical, to the distribution of the central NE terminals 
(Palacios and Kuhar, 1980). NE reaching the ventricle by direct release or diffusion (cf. 

Ziegler et ~1.. 1976; Perlow et (II.. 1978: Ad&r et al., 1979b) may have distant effects, if it 
has any. 

3. Interaction of NE from the LC with other Neurohumors, and its 
Effect on CNS Signal Processing 

3.1. INCREASE IN THE SIGNAL-TO-NOISE RATIO’? 

The “maintained activity” of cerebellar Purkinje ceils is suppressed by NE from the 
LC, while the activations and suppressions of the activity of the same cell evoked by 
electrical stimulation of the climbing fibers, the parallel fibers, the motor cortex. the 

limbs or the vibrissae were increased or left unaffected by NE-and in case that the 
latter activations or suppressions were decreased, this decrease was smaller than the 
decrease in the “maintained activity”+Freedman et ul., 1976, 1977; Woodward et al.. 

1979). The “maintained activity” of neurons in the auditory and somatosensory cortex is 
similarly suppressed by NE from the LC. while also in these regions both the activations 
and the suppressions to species-specific vocalizations and to tactile stimuli remained 
intact, or were even enhanced (Foote et (II., 1975; Woodward et (II., 1979; Waterhouse et 

ul., 1980). The “maintained activity” was considered to be noise, and the experimenter- 
induced activity was regarded as signal, so the signal-to-noise ratio of these cerebellar 
and neocortical neurons was said to be increased (see below for objections to this view. 
and for a less prejudiced description). In the visual cortex. the duration and depth of the 
recovery cycles after visual stimulation were reduced by NE from the LC (Vorob’ev and 
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Nesterova, 1979) which also indicated a NE-induced improvement in the cortical signal 
processing. Similarly, in the hippocampus, the LC has been reported as selectively 
enhancing the response to a (initial neutral) stimulus which was coupled to a significant 
stimulus (e.g. food: Segal and Bloom, 1976b); this was also regarded as a LC-induced 
increase in the signal-to-noise ratio. On the other hand, both the “maintained activity” 
and the activations of dorsal lateral geniculate nucleus neurons due to electrical stimu- 
lation of the optic tract. were increased by iontophoresis of NE and by electrical stimu- 
lation of the LC (Rogawski and Aghajanian. 1980a, b, c); the implications of these find- 
ings will be mentioned below. A selective reduction of the “maintained activity” com- 
pared to the investigator-induced activity is not a unique property of NE: GABA has a 
similar action in the cerebellum and the neocortex. although by means of a different 
membrane mechanism (Foote et rrl., 1975; Freedman. 1977: Waterhouse and Woodward. 
1980). 

3.2. INTERACTION OF NE WITH OTHER PUTATIVE NEUROTRANSMITTERS 

Recently. data have been presented that the actions of NE can be best understood by 
its interaction with various putative neurotransmitters: this might explain NE’s effects 
both on stimulation-induced activity and on the so-called maintained activity (see below). 
The GABA-induced suppression of cerebellar Purkinje cells and of parietal and somato- 
sensory cortical cells is enhanced by NE (Moises er LII., 1979; Moises and Woodward. 
1980; Waterhouse et II/., 1980: Taylor and Stone, 1980) while at the same time the 
Gly-induced suppression of these cells was diminished. The ACh- and Glu-induced acti- 
vation of cerebellar Purkinje cells, dorsal lateral geniculate nucleus relay cells and soma- 
tosensory cortical cells is reported as being enhanced by NE (Moises et al., 1979; Moises 
and Woodward. 1980; Waterhouse et ul.. 1980; Rogawski and Aghajanian, 1980~). Some 
papers indicated a NE-induced reduction of the ACh- and Glu-induced activations but 
this may be due to relatively large NE currents (Legge et ~1.. 1966; Frederickson er trl., 
1971; Segal, 1974; Phillis and Limacher, 1974; Ewart and Logan, 1978a; Reader, 1979a). 
The adenosine-induced suppression of parietal cortical cells is enhanced by NE (Taylor 
and Stone, 1980). It is likely that in the future further examples will be described where 
the combined action of 2 putative neurotransmitters on one target cell is not simply the 
combination of their separate actions at the cellular level. but a more complicated 
interaction. If the action of the putative neurotransmitters at the molecular level (see Van 
Dongen 1980 for “levels”) is known. their simultaneous action can be understood both at 
the molecular and at the cellular level. 

4. Implications of these Findings 

4.1. LC/NE-INDUCED SUPPRESSION IS NOT INHIBITION 

The prototype of “classical inhibition” is the inhibition of spinal r-motoneurons by 
Renshaw cells; the transmitter involved is most probably Gly, but it could also be either 
taurine or /3-analine (cf. Sonnhof et al., 1975; Curtis and Johnson, 1976; Davidson, 1976; 
Nicoll er rrl.. 1976). The mechanism of the Renshaw-induced inhibition is opening of K’ 
channels (Fig. 2; Curtis and Johnson, 1976: Davidson. 1976). The NE-induced sup- 
pression involves a different mechanism (Figs. 1 and 2). The most striking difference 
between Gly-induced inhibition and NE-induced suppression at the molecular level is 
that the Gly-induced inhibition is a passive process, the opening of K+ channels, while 
the NE-induced suppression is an active, energy requiring process, which involves the 
degradation of ATP for the synthesis of cyclic AMP and for actively pumping ions across 
the membrane. The most striking difference at the cellular level is that Gly causes a 
similar suppression of the “maintained” and experimenter-induced activity, while NE 
influences the various transmitter-induced activities in different ways. 
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FIG. 2 Diagram illustrating the differences between “classical inhibition” (as induced by glycine) 
and the LC,!NE-induced suppression. 

4.2. NE AND THE “MAINTAINED ACTIVITY” OF ITS TARGET NEURONS 

The “maintained activity” of the LC’s target neurons might be an effect of 2 causes. 
1. The transmembrane potential of neurons without active afferents is not fixed, but 

shows fluctuations (“membrane noise”). One can imagine that the threshold for spike 
generation is occasionally reached by such stochastic fluctuations; this would result in a 
“spontaneous activity” of this neuron. which is propagated further in the CNS. 

2. A number of neurons give off activating pulses to a neuron, inducing a “maintained 
activity” in the latter neuron; the membrane noise of this neuron causes a stochastic 
transmission of these afferent activating pulses. 

Activity of the LC cells causes release of NE, which has a dual effect. 

1. NE activates an electrogenic ion pump causing hyperpolarization of its target neu- 
rons; this effect diminishes the probability of firing by chance: the “spontaneous activity” 
is suppressed. 

2. NE closes KC channels of its target neurons, thereby increasing the membrane 
resistance. The effect of NE on actions of other neurohumors depends on the molecular 
mechanism of the latter’s effect. Suppose that we are dealing with a “classical excitatory” 
neurotransmitter. the molecular mechanism of whose action is opening of Na+ channels, 
resulting in depolarization. The action of such neurotransmitter on the cellular activity 
will be increased by NE, because an identical outward Na+ current (or even a greater 
Na+ current due to a greater electrical force on Na+ during hyperpolarization) causes a 
larger depolarization, when the membrane resistance is increased (cf. Weight, 1974: and 
in Dismukes, 1979). 

One must expect that the effect of activity of the LC, or of iontophoresis of NE, on the 
“maintained activity” of its target cells depends on the main afferent influence. A toni- 
cally Glu-driven neuron will be activated (cf. Rogawski and Aghajanian, 198Oc), while a 
tonically GABA-driven neuron may be expected to be suppressed. 

4.3. THE PRINCIPLE OF NEUROCHEMICALLY SPECIFIC EFFECTS 

NE appears to have unique effects on its target neurons, and it is probable that other 
putative neurotransmitters each have differing unique effects on their target neurons 
(Bonkowski and Dryden, 1977). Therefore, “the important and universally accepted 
point: different presynaptic fibers can exert one of two fundamentally opposite effects on 
postsynaptic neurons, either facilitation or inhibition” (Patton, 1965, p 168) is not valid 
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any more: various terminals can exert one of more than two different effects. The effect of 
a neurotransmitter is adequately characterized at the molecular level. i.e. by its effects on 
the different ion channels, pumps and other molecules. Such effects not only depend on 
the neurotransmitter involved, but also on its receptors (e.g. ACh. Purves 1976; and DA. 
Kebabian and Calne 1979; Cools and Van Rossum, 1980). (For this reason I did not 
speak about the “Principle of Neurotransmitter Specific Effects”, but about the “Princi- 
ple of Neurochemically Specific Effects”. Some similarities and differences between the 
neurochemical effects of NE and other neurohumors have been mentioned above.) When 
the Neurochemically Specific Effects of two neurotransmitters are known. their simul- 
taneous effect can be understood. 

4 4 NEUROMODULATION~ . . 

It is fashionable to describe the effect of NE (and of other neurotransmitters) in terms 
of “neuromodulation” (or “to modulate”, “neuromodulatory”, “neuromodulator”, cf. Dis- 
mukes and commentaries 1979). Three meanings of these words will be discussed shortly. 
Some authors use these words in their common sense meaning, and not in more-or-less 
strictly defined meanings. A common sense meaning is the following (cf. Lembeck in 
Dismukes, 1979): “M modulates the effect of B” means “M influences the effect of B”. In 
this case, the word “to influence” is sufficient, and “to modulate” is superfluous and is 
unjustly suggested to be a technical term. 

4.5. MODULATION VERSUS EXCITATION AND INHIBITION 

An effect of a neurotransmitter is called “modulation” by some authors, when this 
effect is not “simply excitation or inhibition” (Dismukes 1979; Libet in Dismukes, 1979). 
This would be nice, when we knew what “excitation” and “inhibition” exactly is, or when 
at least these words were conventionally, but strictly defined. A tentative description of 
“excitation” could be “opening of Na+ channels leading to depolarization” (such as the 
effect of ACh via nicotine receptors. and the effects of L-Glu and ~-Asp); and a tentative 
description of “inhibition” an “opening of K’ channels leading to hyperpolarization” 
(such as the effect of the presumably glycinergic Renshaw cells). (It remains however 
questionable whether all effects one wants to call “excitation” or “inhibition” come about 
via these mechanisms.) Note that “excitation” and “inhibition” are hereby reformulated 
as Neurochemically Specific Effects. Another tentative description of “inhibition” at a 
higher (cellular) level is a similar decrease in both the maintained and the experimenter- 
induced activity of a neuron. Consequently the effects of NE both at the molecular and at 
the cellular level are not simply “inhibition”. 

4.6. DOES NE HAVE EFFECTS OF ITS OWN’? 

According to a number of authors, a compound has a “neuromodulatory effect”, when 
it has no effect of its own but only influences (“modulates”) the effects of other neuro- 
transmitters (cf. Torda 1977; Rogawski and Aghajanian, 1980~; Butcher. Evans, Iversen, 
Kupferman and Libet in Dismukes. 1979): a neuromodulator would not influence the 
membrane potential nor the maintained firing rate. NE seems to have effects of its 
own-activation of an electrogenic ion pump and closure of K+ channels-and only in 
one study (Sasa et rrl., 1979) some indications have been published that these effects 
would come about via other neurotransmitters. This applies to the NE-induced effects 
via fl-adrenoceptors (see above). It is uncertain whether the effects of NE via r-adreno- 
ceptors only come about via other neurotransmitters (such as Glu in the dorsal lateral 
geniculate nucleus). or also include effects of NE of its own; investigations with intra- 
cellular recording can solve such problems (cf. Rogawski and Aghajanian, 198Oc). 

4.7. CONCLUSIONS ON THE EFFECTS of NEUROHUMORS 

An implicit assumption in the use of the word “neuromodulator” (or derived words) is 
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that compounds can be distinguished (the “neurotransmitters”) that transmit the “really 
relevant” neural messages (the “signals”, the “excitations” and “inhibitions” in the CNS), 
and that other compounds (often called “neuromodulators”) only modify these messages. 
It would imply that we already know what the signals are (i.e. the activity to be modu- 
lated), what the modulating activity, and what the irrelevant activity (“noise”) is. Such a 
view leads to confusing questions: for instance, both NE and GABA are said to increase 
the signal-to-noise ratio of cerebellar and neocortical cells (Foote et al., 1975; Freedman 
c’t rrl., 1977; Taylor and Stone, 1980); does then NE modulate the GABA-induced effects, 
ot- does GABA modulate the NE-induced effects, or-and this is my opinion-are such 
questions irrelevant? The dichotomy “neurotransmitter” versus “neuromodulator” and 
the dichotomy “excitation” versus “inhibition” are in my opinion an inadequate and too 
simple description of the various effects of neurohumors: I prefer the analysis of effects of 
neurohumors in terms of Neurochemically Specific Effects to a discussion on definitions 
in the classification of neurohumors (cf. Dismukes, 1979; especially the words “neuromo- 
dulation” and “neuromodulator” have created much confusion; I would recommend to 
avoid them altogether). Moreover, I prefer a less prejudiced view on neural activity: each 
neural activity is both a representation of something else (i.e. it has a “meaning”), and has 
effects which are finally, and often indirectly, effects on behavior (see Van Dongen, 1980. 
pp. 217-266). So I prefer the analysis (1) of the Neurochemically Specific Effects of the 
different neurohumors (as has been done in this paper for NE of the LC), and (2) of the 
effects of neural messages at the different levels, from molecular (Neurochemically 
Specific Effects) to behavioral effects (as has been attempted for the LC in Van Dongen, 
1980). 

5. Summary 

I. The present paper reviews the data relating to the central noradrenergic WE) 
transmission of the locus coeruleus (LC). According to the conventional criteria for 
ncurotransmitters, NE can be regarded as a synaptic and nonsynaptic neurotransmitter 
of the LC and possibly as a neurohormone which acts after transport via the cerebro- 
spinal fluid. 

2. The most often described response to iontophoresis of NE, and to electrical stimu- 
lation of the LC is a reduction in the maintained firing rate via /?-adrenoceptors, con- 
comittant with hyperpolarization and with an increase in the membrane resistance. It is 
suggested that these effects come about by an increase in the activity of an electrogenic 
ion pump and by a closure of K’-channels. The molecular mechanism of this action of 
NE might explain the interaction of NE with other putative neurotransmitters. The 
response of LC-target neurons to other stimuli remains relatively intact during a NE- 
induced reduction of the maintained firing rate: the “signal-to-noise ratio” of LC-target 
cells is regarded by many authors as being increased by NE. In this paper, it is suggested 
that LC’s actions can be better understood by the interaction of NE with other putative 
neurotransmitters. than as an increase in the signal-to-noise ratio: NE increases the 
response to some putative neurotransmitters, and decreases the response to others. The 
conclusion that NE from the LC improves the signal processing in its target regions 
seems attractive. but cannot yet be shown to be false or true. 

3. Iontophoresis of NE and electrical stimulation of the LC have been reported as 
increasing the maintained firing rate of a minority of neurons via a-adrenoceptors. The 
cellular and molecular mechanism of this action is scarcely investigated. 

4. It is suggested that the action of a putative neurotransmitter is complex, such that 
the dichotomy “excitation” versus “inhibition” is a description that is inadequate to 
describe the various neurotransmitters’ effects: the effects of neurotransmitters can be 
described adequately as “neurochemically specific effects”. 

5. The words “neuromodulation” and “neuromodulator” appear to be used with a 
variety of meanings, which makes them meaningless; it is recommended not to use them 
at all. 
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